
1. Introduction
In the face of rising water scarcity, spurred by growing human populations and climate change, policy makers 
and farmers are increasingly reliant on treated wastewater and brackish water as critical sources for irrigation 
(Assouline et al., 2015; Bixio et al., 2006; Levy, 2011; Oster, 1994). While integration of these and other marginal 
quality water sources can help maintain food production under conditions of growing demand, it also introduces 
its own set of environmental hazards. Marginal quality water resources often have higher salinity concentrations 
than freshwater (Assouline & Narkis, 2013; Levy, 2011; Schacht & Marschner, 2015). When not managed prop-
erly, salinity can lead to declining plant yields and irreversible damage to soils (Assouline & Narkis, 2011, 2013; 
Bardhan et  al.,  2016; Hillel,  2000; Läuchli & Grattan,  2011; Levy,  2011; Mandal et  al.,  2008; Schacht & 
Marschner, 2015; Shainberg & Singer, 2011). Because of this, salinity and sodicity are considered major drivers 
of land degradation—affecting as much as 50% of irrigated land, leading to billions of dollars in economic losses, 
and threatening global food security (Daliakopoulos et al., 2016; FAO & ITPS, 2015; Ghassemi et al., 1995; 
Howitt et  al.,  2009; Prăvălie et  al.,  2021; Qadir et  al.,  2014; Wallender & Tanji,  2011; Wicke et  al.,  2011). 
The extent of global salinity is presented in Figure 1, which relies on data compiled by the FAO's Global Map 
of Salt-Affected Soils (FAO,  2023), an ongoing initiative to survey salinity distribution across all countries. 
Although the data are incomplete, it is clear that arid regions are amongst the most affected by soil salinity. Many 
of these areas are key to world agricultural productivity and also home to rapidly growing populations.

Compounding the dangers posed by salinity and sodicity is the fact that over the long term, unaddressed land 
degradation can lead to a net increase in carbon emissions, and therefore a negative feedback on climate (Olsson 
et al., 2019). Given the potential benefits and dangers of dependence on saline waters, effective models are essen-
tial to facilitating sustainable management (Assouline et al., 2015; Hopmans et al., 2021; Oster, 1994; Vereecken 
et al., 2016). Such models can be used to analyze the complex interactions between soil and plant systems, and 
the main drivers of their dynamics, namely climate and irrigation. As pressures on global food supplies rise under 
growing populations, efficient management of marginal quality land and water resources will become increas-
ingly important to ensuring reliable and secure agricultural output.
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The aim of this review is to compare the most important modeling frameworks developed for studying salinity 
and sodicity in agricultural systems. We begin by briefly outlining how salinity and sodicity affect agricultural 
systems (Section 2) and then discuss models that have been developed for the study of their effects on soil struc-
ture (Section 3) and plant functioning (Section 4). In Section 5, we examine dynamical models, which facilitate 
the study of how soil salinity and sodicity conditions evolve over time, and how these changes affect soil structure 
and plant output. We then overview some of the most significant applications of these models—studies that simu-
late expected plant yields in conditions of changing salinity, soil degradation risk over time, and the effectiveness 
of specific rehabilitation methodologies (Section 7). Finally, we discuss the most pressing gaps in present mode-
ling capabilities and priorities for future research (Section 8).

2. Effects of Salinity and Sodicity on Plants and Soils
2.1. Soil Salinity

Soil salinity refers to the concentration of various electrolytic mineral solutes—most commonly sodium, 
calcium, magnesium, chloride, and sulfate ions; less commonly nitrate and potassium—in the soil solution 
(Bernstein, 1975; McGeorge, 1954). Salinity can be measured as the electrolyte concentration in the soil solution 
(mmolc L −1). It is more common, however, to use electrical conductivity (dS m −1) as a proxy for salinity, due to its 
ease of measurement, with the rule-of-thumb conversion: 1 mmolc L −1 ≈ 10 dS m −1 (McGeorge, 1954).

As the osmotic pressure of the soil solution rises, it becomes increasingly difficult for plants to extract water from 
the root zone (Bernstein, 1975; Maas & Grattan, 1999; Munns, 2002; Tanji & Kielen, 2002). Plants in highly 
saline conditions, therefore, often experience stresses similar to those of plants facing drought (Bernstein, 1975; 
Maas & Grattan, 1999; Munns, 2002; Tanji & Kielen, 2002). Certain crops, for example, corn and potatoes, 
are extremely sensitive to saline conditions, with yields beginning to decline at concentrations as low as 20 
mmolc L −1 (Maas & Grattan, 1999). Other species, including barley and cotton, are comparatively resilient, with 
yields declining only when concentrations approach 80 mmolc L −1 (Maas & Grattan, 1999).

Figure 1. Major agricultural producing regions across the world are the most affected by surface level salinity, according to FAO effort to map salinity issues among 
UN member states. Data collection from members states is ongoing and regularly updated on the FAO's website (FAO, 2023). Figure reprinted with permission from 
FAO and Christian Omuto (Global Salt-Affected Soils Map, v2.0, 2023).
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The input of salts to soils can occur from both primary (erosion of rocks with high salinity content, ocean spray, 
or seawater intrusion) and secondary (human) sources. This review focuses on models used to study secondary 
salinity in agricultural systems, most commonly resulting from irrigation with marginal quality waters that are 
high in salt content, or irrigation practices and land-use changes that cause a rise in saline groundwater.

2.2. Soil Sodicity

Soil sodicity refers specifically to the relative concentration of sodium bonded to exchange sites on the surface 
of clay and organic matter, called the exchange complex. As water of varying chemical composition enters and 
exits the root zone, exchange between the soil water and soil surface affects the distribution of cations adsorbed 
to the exchange complex. The relative fraction of sodium ions in the exchange complex is important because 
high concentrations of monovalent cations are known to cause the breakdown of bonds between soil particles, 
resulting in the dissolution of soil aggregates (Bardhan et al., 2016; Levy, 2011; McGeorge, 1954). Damage to 
soil aggregates inhibits the easy movement of water and air in a soil's root zone, thereby threatening plant growth 
(Bardhan et al., 2016; Levy, 2011; Mandal et al., 2008; McGeorge, 1954).

The relative fraction of sodium ions in the exchange complex is typically referred to as the Exchangeable Sodium 
Percentage (ESP). When the exchange complex is in chemical equilibrium with soil water, the Sodium Adsorp-
tion Ratio (SAR) is a useful measure of sodicity (McGeorge, 1954). The commonly used Gapon Equation is 
based on exchange isotherm considerations, and it relates the SAR and ESP (Sposito, 1981). Most experimen-
tal and modeling studies have focused on the role of sodium in causing aggregate breakdowns, since it is the 
most common monovalent cation in soils. Recent works, however, have attempted to integrate the effects of less 
common monovalent cations. Notably, the CROSS ratio considers the effects of both Na and K cations on clay 
dispersion and Ca and Mg cations on clay flocculation (Bennett et al., 2016; Rengasamy & Marchuk, 2011).

2.3. Saturated Hydraulic Conductivity

The effect of changing chemical conditions on soil structure can be analyzed through changes in saturated hydrau-
lic conductivity, Ks (mm/day). Abundant field and laboratory experiments have demonstrated that while moder-
ately sodic conditions may cause small declines in Ks via the temporary swelling of clay particles, more extreme 
inputs can cause an actual breakdown of the bonds between soil particles, leading to irreversible dispersal of clay 
particles and long-term destruction of soil aggregates (Bhardwaj et al., 2008; Dang et al., 2018, 2018a, 2018b; 
Levy et al., 2005; McNeal et al., 1968; Menezes et al., 2014; Oster & Schroer, 1979; Shabtai et al., 2014). The exact 
thresholds at which this transition from reversible to irreversible damage occurs is highly soil specific, dependent 
on clay mineralogy, and other factors (Bennett et al., 2019; Dang et al., 2018, 2018a, 2018b; Frenkel et al., 1978; 
Levy et al., 2005; McNeal et al., 1968; Menezes et al., 2014; Quirk & Schofield, 1955; Y. Zhu et al., 2019). The 
USDA initially identified ESPs above 15 as dangerous for soils (McGeorge, 1954), while other  experimental work 
has demonstrated that ESPs as low as five can cause serious soil damage (McIntyre, 1979; Oster & Schroer, 1979).

3. Modeling the Effect of Soil Salinity and Sodicity on Soil Structure
Given the threat of damage to Ks, models that can offer insight into how soil structure will respond to changing 
chemical conditions are critical. Declines in Ks are most likely to occur when there is a precipitous drop in overall 
salinity concentration, but the relative fraction of sodium ions bonded to the soil's surface remains high (Adeyemo 
et al., 2022; McNeal & Coleman, 1966; Shainberg & Letey, 1984; Shainberg & Singer, 2011). In arid and semi-
arid regions, these conditions are common when irrigation with saline water is followed by rainfall-induced 
leaching. Intense precipitation events can lead to large declines in the salinity concentration of the soil solution, 
while the ESP remains high, since changes to the soil exchange complex occur on a slower time scale (Kramer & 
Mau, 2020; Mau & Porporato, 2015; Shainberg & Shalhevet, 1984; van der Zee et al., 2014). In what follows, we 
overview models for the effect of salinity and sodicity on Ks that were developed based on data from soil column 
experiments that replicate this change in chemical conditions. Additionally, several mechanistic models have 
been developed by incorporating theoretical knowledge of the soil electric double layer.

3.1. Empirical Models

The framework developed by McNeal (1968) exemplifies the empirical approach to modeling the effect of chem-
ical composition on Ks. The model itself is based on the results of experiments (McNeal & Coleman, 1966) in 
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which declines in Ks were measured as water of progressively lower EC was applied to soil columns, while SAR 
was held constant. The experiments were repeated for several SAR values and the collected data was used to fit 
a model (an algebraic equation) for the fractional reduction in Ks, given two inputs: salinity concentration and 
soil ESP. While the McNeal model includes soil-specific parameters, such as the fraction of montmorillonite clay 
and the ESP at which declines in relative Ks first begin, applications have nearly always relied on the original 
values assumed by McNeal. This simplification eliminates the possibility of comparing between soils, but it has 
arguably been a major factor in the wide incorporation of the McNeal model into dynamical models (Section 5).

An incremental improvement on McNeal, presented by Ezlit et al. (2013), addresses some of the former's limi-
tations with regards to soil-specific differences. Beginning with the same experimental framework used by 
McNeal, Ezlit et al. seeks to clarify the soil-specific boundary between clay flocculation (largely reversible) and 
the disaggregation of soil aggregates (irreversible). In effect, Ezlit's model reparametrizes McNeal's model so that 
it can be used to calculate relative Ks for given salinity and sodicity values on a soil-specific basis.

The McNeal and Ezlit models share an important assumption: they are based on experiments in which EC only 
declines, despite the fact that EC and SAR regularly increase and decrease in agricultural systems, in response to 
changes in root zone inputs and outputs. Fluctuations in salinity and sodicity have been shown to cause hyster-
esis in relative Ks (Adeyemo et al., 2022; Dane & Klute, 1977), but neither Ezlit nor McNeal can capture this 
phenomenon. Instead, both models implicitly predict increases in relative Ks will occur as if any prior decline was 
completely reversible in nature. When integrated into dynamic models (Section 5), this can produce misleading 
results, wherein relative Ks rapidly jumps when the chemical composition of the input water improves, despite 
ample field evidence that declines in relative Ks following the application of high-SAR water are often irreversi-
ble (Assouline & Narkis, 2011; Bhardwaj et al., 2008; Schacht & Marschner, 2015).

Kramer et  al.  (2021) targets the issue of hysteresis, presenting a model for the effect of salinity and sodic-
ity on relative Ks that explicitly accounts for irreversible declines in relative Ks. The Kramer model considers 
soil-specific differences in hysteresis patterns, both with respect to susceptibility to degradation and propen-
sity to rehabilitation. The Kramer model achieves this flexibility by adapting the Preisach model for hysteresis 
(Mayergoyz, 1986). Parameterizing the Kramer model requires a set of experiments that begins similarly to those 
utilized by McNeal and Ezlit. In contrast, Kramer requires that Ks also be measured as water of increasing quality 
is applied to the soil, following its initial decline (Adeyemo et al., 2022; Kramer et al., 2021). While validation has 
shown that the Kramer model can successfully capture observed hysteresis trends in soils (Adeyemo et al., 2022), 
the experiments required to parameterize it are significantly more demanding than those needed for the Ezlit 
or McNeal models, both with respect to time and labor. Their difficulty is a limiting factor in the wide-scale 
application and validation of the Kramer model. Likewise, the computational and programming requirements 
to implement the Kramer model are significantly higher than those of the McNeal or Ezlit models. In situations 
with limited computer capacity or expertise, users are likely to find the Ezlit or McNeal models more accessible.

3.2. Theoretical (Mechanistic) Models

Another set of models for the effect of salinity and sodicity on Ks are theoretical models, notably those developed 
by Russo (Russo, 1988; Russo & Bresler, 1977) and Lagerwerff et al. (1969). These models are based on diffuse 
double layer theory and incorporate earlier works linking water flow rates to soil porosity (Childs et al., 1950; 
Marshall, 1958; Millington & Quirk, 1959). A significant advantage of these models is that they capture the 
state of knowledge around the relationship with actual soil properties. This frees them from the constraints of 
soil-specific experiments, and allows users to efficiently explore the models' sensitivity to various parameters. 
In other respects, however, these models are less flexible than their empirical counterparts. In particular, the 
mechanistic models are dependent on imperfect double layer theory and ionic functions to explain the swelling 
processes in soils (Ezlit et al., 2013; Lagerwerff et al., 1969). In focusing on explaining swelling processes, these 
models do not take into account changes in Ks that might result from dispersion of clay particles. Dispersion 
of clay particles is a key element in the breakdown of soil aggregates, which can cause the type of irreversible 
declines in Ks discussed in Section 2.3 (Russo & Bresler, 1977). Finally, while parameterization of these models 
is not dependent on experimental work, it does still require extensive knowledge of soil properties. The Russo 
model, for instance, requires measurements of the specific surface area of the soil and water content-pressure 
relationships, and should be used only when montmorillonite is the dominant clay (Russo & Bresler, 1977). It is 
also sensitive to accurate estimation of the number of platelets per clay particle (Russo & Bresler, 1977).
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4. Modeling the Effects of Salinity on Plant Functioning
Models for the effects of salinity on plant functioning are used to predict how varying salinity concentrations will 
affect transpiration and, ultimately, yield. Such models have been extensively reviewed (Minhas et al., 2020), and 
so we present only a short summary here.

For the most part, models for plant response to salinity consider steady-state conditions in which salinity concen-
tration and soil water content remain constant. The most basic steady-state models use simple linear functions 
in which declines in yield are based on a particular plant's sensitivity thresholds (Ayers & Westcot, 1985; Maas 
& Hoffman, 1977). The FAO's guidelines for computing crop water requirements adopt this approach, linking 
salinity concentrations to changes in expected evapotranspiration (Allan et al., 1998). The FAO model considers 
the threshold EC at which a specific crop begins to experience decreases in yield and the rate of decline there-
after (Allan et al., 1998). This approach is implemented in the AquaCrop model (Salman et al., 2021), which is 
designed to study the effects of water shortages on crop productivity.

More complex mechanistic models include Shani et al. (2007) and Skaggs et al. (2014). Shani et al. develop a 
mechanistic model that can be used to analytically solve for the effect of root zone salinity and water status on 
plant transpiration, which serves as a proxy for total yield. The model is capable of considering various plant 
species, climates conditions, soil characteristics, and irrigation practices. The Skaggs et al. model takes a similar 
approach, but uses explicit equations that do not require an iterative approximation to solve (Minhas et al., 2020; 
Skaggs et al., 2014). The Skaggs et al. model also considers two alternative mechanisms for reduced plant water 
uptake (Skaggs et  al.,  2014). Numerous experimental works have supported the overall effectiveness of the 
Skaggs and Shani models (Karlberg et al., 2006; Shani et al., 2007; Skaggs et al., 2014).

Perri, Entekhabi, and Molini (2018) and Perri et al. (2019) developed plant osmoregulation models that explain 
the different transpiration profiles of glycophytes and halophytes as a function of soil salinity. These models 
assume a storage compartment in the plant, that helps regulate water fluxes and internal salt concentration. 
This storage module is then coupled with other modules for stomatal regulation, xylem vulnerability curve, root 
filtration, and carbohydrates production and transport, into a coherent soil-plant-atmosphere continuum (SPAC) 
model. Perri assumes short time scales of minutes to hours, where salt-stress is mostly due to osmotic effects, 
while longer ionic stress (toxicity) effects are neglected. Nevertheless, the models offer an elegant minimalistic 
account of the emergent behavior of salt tolerance.

5. Dynamical Models
In regions where annual precipitation is above 500 mm, rainfall is generally a sufficient control on the ill effects 
of irrigating with high salinity water (Lado et al., 2012). In arid and semi-arid regions, however, active manage-
ment is often necessary to prevent dangerous salinity and sodicity buildup. Historically, the primary mechanism 
for lowering salinity levels in agricultural systems has been through leaching, that is, the application of more 
water than required for plant and evaporative demands. Leaching stimulates the downward movement of water, 
and with it suspended solutes, out of the soil's root zone. The simplest models for calculating a soil's leaching 
requirements are based on steady-state systems, with constant input conditions. Such models have been reviewed 
extensively (Corwin et  al.,  2007; Corwin & Grattan,  2018; Hoffman,  1985; Letey et  al.,  2011; Oster,  1994; 
Rhoades, 1968; Van Hoorn, 1981; Visconti et al., 2012).

Here, we focus on more sophisticated models, which allow for the study of how salinity and sodicity dynamics 
evolve over time, as driven by irrigation, climate conditions, and soil properties. At a minimum, these models 
feature equations for water flow through the root zone and transport of solutes under conditions of variable 
saturation. They differ with regards to their treatment of water infiltration and drainage, feedback on Ks, and 
methods for determining rainfall inputs, among other features. Such models have a number of advantages over 
basic models for calculating leaching requirements. Leaching, by definition, leads to wasted resources. When 
leached water contains salts and other solutes, it can also constitute a significant source of pollution, endan-
gering the quality of groundwater, streams, rivers, or other bodies to which the drainage flows (Assouline & 
Shavit, 2004; Schoups et al., 2005). Likewise, leaching focuses primarily on salinity hazards, while ignoring the 
equally important risk of soil degradation posed by high sodicity. Dynamical models can effectively address each 
of these issues.
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5.1. Soil, Plant, and Atmospheric Dynamics Using the Richards Equation

The most common method for modeling salinity in soils has been to combine the Richards equation for unsatu-
rated water flow and some form of the advection-diffusion equations for solute transport. Models that rely on 
this approach include Hydrus (Šimůnek et  al.,  2013; Šimůnek & Suarez,  1994), SWAP (Kroes et  al.,  2017), 
RZWQM2 (Ma et al., 2012), WAVES (L. Zhang et al., 1999a), LEACHC (Hutson & Wagenet, 1995), SALTMED 
(Ragab, 2002), SWS (Suarez, 2011), and the Russo model (Russo, 1984, 1988, 2013; Russo et al., 2004).

A major advantage of the Richards and advection-diffusion approach is that together the equations can accurately 
model solute and water dynamics at both high spatial and temporal resolutions. This makes it possible to use 
these models to study questions related to the localized leaching of salts, the effects of a single irrigation event, 
complex ion chemistry, or the dynamics in layered profiles, where soil physical and chemical properties are 
spatially variable (Section 7). Less advantageous, it has been argued that the Richards equation can be compu-
tationally expensive for simulations with small time steps (Kramer & Mau, 2020; Mau & Porporato, 2015; van 
der Zee et al., 2014). The Richards Equation has also been shown to fail under certain conditions, such as a fast 
wetting rate (Farthing & Ogden, 2017; Short et al., 1995; Tocci et al., 1997) and preferential flow (Brindt & 
Wallach, 2017, 2020), which is common in saline conditions (Brindt et al., 2019). This can be an obstacle to the 
study of questions related to climate, for example, where a user might want to examine thousands of different 
parameters at once, on sub-daily time scales (Kramer & Mau, 2020; Mau & Porporato, 2015).

Hydrus, SWAP, and RZWQM2 are the most widely used models of this category, and the only ones for which 
regularly maintained software is available. All three are extensive applications, which can be used to study a 
range of processes in the vadose zone—not just those related to salinity dynamics. Hydrus, in particular, has been 
widely applied to the study of salinity and sodicity in one-, two-, and three-dimensional environments (Section 7). 
Chemical exchange in Hydrus is determined using the UNSATCHEM module, which can account for equilibrium 
chemical reactions, including cation exchange and precipitation-dissolution (Šimůnek et al., 1996). (The SWS 
model also uses a modified version of UNSATCHEM).

SWAP (Soil, Water, Atmosphere, Plant) and RZWQM2 (Root Zone Water Quality Model) likewise, focus on the 
transport and exchange of salts and other solutes, albeit for 1D profiles only. While the extensive nature of SWAP, 
RZWQM2, and Hydrus can allow for the simultaneous study of several complex environmental processes, it is 
worth noting that they require users to have a minimal understanding of an entire suite of soil processes before 
operating the software, thus imposing an entry barrier for novice users interested in studying a single process. 
Earlier reviews cover some of the primary differences in software requirements, relative strengths, and weak-
nesses of these models (Corp., 2003; Ditthakit, 2011; Goel & Tiwari, 2013; Nolan et al., 2005).

5.2. Other Richards Equation-Based Models

The model developed by Russo likewise relies on the Richards and advection-diffusion equations, focusing exclu-
sively on the movement and exchange of calcium and sodium cations in 1D or 3D soil profiles. Focusing on 
Ca 2+ and Na + is common when the user wants to study salinity apart from other soil chemical processes, since it 
emphasizes the contrasting effect of monovalent and divalent cations on soil structure, and because sodium is far 
more common than other monovalent cations (Bernstein, 1975; McGeorge, 1954). The most distinctive aspect of 
the Russo model is its consideration of a spatially heterogeneous soil profile, achieved through stochastic distri-
butions of soil parameters. While similar examinations of heterogeneous soil profiles can be handled by many 
of the modeling frameworks discussed here, doing so requires pre-programming of inputs and post-processing 
of results.

WAVES, SALTMED, and LEACHC offer the most narrow applications of the Richards and advection-diffusion 
equations approach. LEACHC, part of the LEACHM suite of models, focuses on the movement of water and 
solutes in a 1D layered soil profile, with modules for crop growth and solute exchange. WAVES and SALTMED 
take simplified approaches to solute transport, leaving aside exchange between the solution and soil matrix, which 
is crucial for understanding the effects of soil sodicity.

Friedman and Gamliel (2021) applies the DIDAS model (Friedman et al., 2016) to study salinity management 
for systems using drip irrigation. The model can account for seasonal salt accumulation under changing climate 
and irrigation conditions, with an evolving root-zone and under differently arranged driplines and drippers. The 
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DIDAS model, it is important to note, focuses only on changes in salt mass balance and does not consider chem-
ical exchange or precipitation.

5.3. Non-Richards Equation-Based Models

An alternative approach, which eschews reliance on the Richards and advection dispersion equations alto-
gether, is offered by SOTE (Kramer et  al.,  2022; Kramer & Mau,  2020) and its earlier versions (Mau & 
Porporato, 2015, 2016), and a series of models developed by van der Zee et al. (S. H. Shah et al., 2011; van 
der Zee et  al.,  2010,  2014). These models favor mathematical and computational simplicity over precision, 
and focus exclusively on salinity and sodicity dynamics. While this limits users interested in the additional soil 
processes included in Hydrus and SWAP, for instance, it reduces the processing power and time needed to run 
these programs, making them more amenable, for example, to coupling with climate models. The simplicity of 
these models is also, arguably, an advantage in terms of analysis, allowing for more accessible insights into the 
connection between input conditions and simulation results.

SOTE and the van der Zee models are similar in structure, with each featuring three differential equations, one 
each for water, salinity, and sodicity dynamics. In both models, drainage and evaporation are determined using 
well-known ecohydrological and pedotransfer functions (Laio et al., 2001; Rodríguez-Iturbe & Porporato, 2005), 
thus forgoing the complexity of the Richards equation. Most importantly, neither of these models have a spatial 
component, averaging the variables in the root zone using a bucket-model approach. As in the Russo model, 
chemical exchange is restricted to Ca 2+ and Na +, to emphasize the difference between monovalent and diva-
lent  cations, which is critical to understanding degradation risk. Both models also use the Gapon equation for 
chemical exchange between the soil solution and soil surface. A major area of difference between the two models 
is their focus on the source of salts. The van der Zee models prioritizes input of salts from groundwater. While 
SOTE can accommodate groundwater inputs, it has mainly been used to study the input of salts from irrigation.

Shah et al. modify the well-known DNDC model to include the effects of salinity on soil water (Hussain Shah 
et al., 2021, 2022; S. H. H. Shah et al., 2022). Originally developed to predict carbon and nitrogen dynamics in 
agricultural systems, the DNDC model (C. Li et al., 1992) connects soil water dynamics with plant growth, nutri-
ent cycles, and carbon and nitrogen emissions. Shah et al. adapt this framework so that it includes salt transport 
equations, which allow for the study of the effects of salinity on soil water movement and vegetation growth on a 
daily time scale. The Shah et al. model does not explicitly consider sodicity changes.

Finally, SaltMod (Mao et al., 2017; Oosterbaan, 2001) is another program that strives to be a simple tool for 
salinity management. Like SOTE and van der Zee, SaltMod avoids the Richards equation in favor of a simpler 
description of water flow dynamics. SaltMod, however, is designed to analyze salinity levels on a seasonal 
basis, and cannot accommodate the analysis of input or output on smaller time resolutions. SahysMod expands 
upon the Saltmod framework for analysis of larger spaces (Inam, Adamowski, Prasher, & Albano, 2017; Inam, 
Adamowski, Prasher, Halbe, et al., 2017; Singh & Panda, 2012).

5.4. Hydraulic Conductivity Feedback

A major area of difference between the discussed models is their consideration of how changing chemical condi-
tions affect Ks. Hydrus (Šimůnek et al., 2013) and van der Zee (van der Zee et al., 2014) implement versions 
of the McNeal (1968) model to calculate relative Ks at particular salinity and sodicity levels, with Hydrus also 
considering pH. Likewise, the dynamical Russo model integrates Russo's mechanistic framework for declines in 
Ks (Russo & Bresler, 1977). As discussed in Section 3, neither the McNeal nor the Russo frameworks include 
the effects of hysteresis on Ks. Furthermore, the McNeal model, as implemented by Hydrus, does not consider 
soil-specific differences in susceptibility to degradation. Dynamical models that integrate the McNeal and Russo 
frameworks are therefore limited in their ability to quantify realistic changes in Ks as chemical conditions evolve. 
When used to forecast the risk of longterm soil degradation they are likely to provide unrealistically low proba-
bilities of declines in Ks (Kramer et al., 2022).

SOTE (Kramer et  al.,  2022), by contrast, incorporates the Preisach-based framework developed by Kramer 
(Kramer et al., 2021). SOTE's hysteresis-based Ks function can be computationally demanding if the user runs 
thousands of stochastic simulations (Kramer et al., 2022). Running a smaller number of simulations, however, is 
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unlikely to significantly affect the model's run time and enables users to study how soils with varying suscepti-
bilities to degradation and propensities to rehabilitation will respond to evolving input-water conditions. Aside 
from the models discussed in this subsection, all other dynamical models ignore any effect of changing chemical 
conditions on Ks, precluding their use as tools to study sodicity as a cause of soil degradation.

5.5. Feedbacks on Plant Growth

Several of the models introduced in Section 5 can model the effects of changing salinity on plant output, in vari-
ous capacities. In Hydrus, root water uptake can be limited by osmotic stress, with changes in crop yield repre-
sented through actual and potential crop evapotranspiration (Karandish & Šimůnek, 2019). Likewise, SALTMED 
also connects root water uptake to salt concentrations, but can simulate actual crop yields during the growing 
cycles (Karandish & Šimůnek, 2019). Invidual studies have attempted to couple the dynamic models with crop 
growth modules, including the pairing of the EPIC model and Hydrus (Feng et al., 2021). SWAP simulates plant 
growth through the integration of the WOFOST cropping model (de Wit et al., 2019; Kroes et al., 2017; Kroes 
& Supit, 2011). WOFOST does not, however, explicitly consider the effects of salinity as a limitation on plant 
growth, thereby limiting the integrated models ability to predict the effects of changing salinity on plant health (J. 
Zhu et al., 2018). Likewise, RZWQM2 integrates the DSSAT model for plant growth, but the version of DSSAT 
used by RZWQM2 does not include the effects of salinity (Jones et al., 2003). WAVES considers the effects of 
salinity on carbon assimilation by plants and water availability, and has been shown to effectively model declines 
in yield due to severe salinity stress (Yu et al., 2021; L. Zhang et al., 1999b). Finally, SALTMED also includes 
equations for crop water uptake and relative yield, in which higher osmotic pressure can result in reduced water 
uptake by plants (Alkhasha & Al-Omran, 2019; Chauhdary et al., 2020; Silva et al., 2012). A detailed exami-
nation of the different plant models used by dynamical models for salinity, including comparisons of expected 
effects on yield is presented by Oster et al. (2012).

6. Other Models of Note
The dynamical models discussed so far focus on field-level analysis of secondary salinity, which is crucial for the 
effective management of salinity and sodicity in agricultural areas. We note, however, several recent models that 
are slightly outside of this scope, yet still might be of interest to policy makers and the wider soil science commu-
nity. Hassani et al. utilize machine-learning techniques and available soil and climate data to develop a model 
capable of predicting regions in which salinity levels are most likely to be affected by climate change (Hassani 
et al., 2020, 2021). Perri et al. use simple stochastic models to study how primary soil salinity limits plant uptake 
of water, thereby acting as a form of aridity in many landscapes (Perri, Suweis, et al., 2018; Perri et al., 2020). On 
a regional level, Bailey et al. (2019) present a version of the SWAT model which can be used to study salt trans-
port on the watershed scale. Finally, Vermeulen and Niekerk (2017) use machine learning techniques to identify 
areas most at risk to soil salinization based on geomorphic features, including topography.

7. Applications
Of all the dynamical models reviewed in Section 5, Hydrus has been the most widely applied to study the effects 
of salinity and sodicity on soils and rehabilitation techniques. Over 100 published papers have used Hydrus to 
investigate questions related to salinity and sodicity. While an overview of all of these papers is outside the scope 
of this article, in this section we highlight some of the most important research trends involving Hydrus and the 
other models covered in this review.

As noted in Section 5, Hydrus is particularly well suited to the study of field-scale conditions. One of the most 
common applications of Hydrus has been to compare simulated results to outcomes from field experiments. 
Multiple studies (Gonçalves et al., 2006; Ramos et al., 2011) have shown that Hydrus is able to satisfactorily 
track soil water content, salinity concentration, soil ESP, and other solute concentrations in simulations that 
replicate several-year field and lysimeter experiments using standard irrigation practices. Likewise, it has been 
demonstrated that Hydrus can be used to compare the effects of different irrigation practices, involving water of 
changing chemical compositions (Mallants, Šimůnek, & Torkzaban, 2017; Mallants, Šimůnek, van Genuchten, & 
Jacques, 2017; Phogat et al., 2018), responses to deficit irrigation conditions (Ramos et al., 2019), and different 
mulching techniques (Chen et al., 2022; Selim et al., 2013).
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Hydrus simulations have also been widely used to study leaching efficiency. Shaygan et  al.  (2018) analyze 
Hydrus simulations against leaching experiments in which soils were treated with various physical amendments, 
while Berezniak et al. (2018) studied the effect of modifications to textural distributions in the soil profile on 
leaching of salts using both experimental lysimeters and Hydrus simulations. In this study, both Hydrus and 
the experimental results demonstrated that the introduction of a volume of coarse soil, located under a drip 
irrigation emitter, surrounded by finer texture soil increased leaching efficiency in the area around the dripper 
(Berezniak  et al., 2018). Simulations by Yang et al. (2019), however, found that removal of salts from the root 
zone was more pronounced with sprinkler irrigation than with drip irrigation. Y. Zhang et al. (2021) study the 
efficacy of surface water leaching at various stages of growth and find that earlier leaching applications can 
reduce exposure to salt stress. Siyal et al. (2010) used Hydrus and experimental results to demonstrate the poten-
tial water savings from using partial ponding to leach salts from the root zone. Finally, Hydrus has also been 
used to study the effect of different climate conditions on leaching of salt-affected soils in Australia (Shaygan & 
Baumgartl, 2020), with results indicating that a greater number of individual rain events was most effective in 
removing salts from the root zone.

Yet another common application of Hydrus has been used to model the effects of different irrigation techniques, 
such as drip, sprinkler, and subsurface irrigation. Hanson et al. (2008, 2009) and Roberts et al. (2009) show that 
subsurface drip irrigation can enable greater salinity control, providing farmers a profitable and less wasteful 
alternative to flood irrigation.

In addition to questions related solely to salinity, Hydrus has also been used to study the effects of sodicity on 
soils, including rehabilitation efforts. Šimůnek and Suarez (1997) and Suarez (2001) compare UNSATCHEM 
simulations to a field study in which gypsum was applied to stimulate rehabilitation in a heavily sodic 
and  saline  soil. Their results show that UNSATCHEM satisfactorily predicted the actual EC and SAR values 
following rehabilitation treatment. A study published by Reading et  al.  (2012) compares Hydrus simulations 
to soil column experiments examining declines in Ks as water of varying chemical composition is applied to 
the soil. The general trends observed in the laboratory experiments were able to be simulated using HYDRUS. 
Differences between measured and simulated results were attributed to the limited flexibility of the function that 
represents chemistry-dependent hydraulic conductivity in HYDRUS. Recovery of Ks in Hydrus was faster than in 
experimental conditions, which can be expected given that the Ks function in Hydrus does not include hysteresis.

A sensitivity analysis conducted by Schoups et al. (2006) of the UNSATCHEM model investigated the effect of 
the removal of processes on the accuracy of the model's salinity predictions. Their findings suggest that major 
simplifications—including the removal of preferential flow, transport through soil macropores, hysteresis in soil 
wetting and drying, and non-equilibrium reactions between the solid phase and the soil solution—did not lead 
to significant changes in results. Schoups et al. (2006) conclude that their results support the use of simplified 
models when reducing computer processing time is a priority.

The SWAP model has likewise been widely used to study questions related to salinity, with a particular emphasis 
on understanding the effects of saline water on expected yield. P. Li and Ren (2021) use the coupled SWAP and 
WOFOST models to examine how irrigation with water of varying salinity levels affects wheat output and leach-
ing levels under different rainfall regimes. A similar study conducted by Kumar et al. (2015) found that SWAP 
was able to effectively model salinity levels in the rootzone, and that the model was better able to predict changes 
in yield for salt-resistant wheat varieties as compared to salt-sensitive varieties. Ben-Asher et al. (2006) demon-
strated that SWAP was able to effectively model the effects of irrigation with saline water on grapevine growth. 
Hassanli et al. (2016) compare SWAP's ability to simulate maize yields under saline conditions to results from 
the SALTMED and Aquacrop models. Their results suggest that SALTMED was the strongest of the evaluated 
models for predicting changes in maize yield. Jiang et al. (2011) use SWAP to simulate higher salt concentrations 
and lower soil water contents under deficit irrigation conditions. Finally, Eberhard et al. (2020) used SWAP to 
analyze the long-term impact of infiltration of saline groundwater. They find that rainfall can mitigate the accu-
mulation of salts in the upper soil profile, even when salinity levels in the lower soil layers rise steadily.

A combination of the Hydrus and SWAP models, H2DSWAP, was introduced by Liu et al. (2022) for the study of 
maize yield under saline conditions. Their results suggest that the combined model is significantly more accurate 
for predicting soil water content and salt concentrations, with the model also able to satisfactorily match experi-
mental results for yield and Leaf Area Index.
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Application of the SOTE, Russo, and Van der Zee models has primarily focused on analyzing the effects of 
irrigation with saline and sodic water on soil hydraulic conductivity, with particular attention to the effects of 
irrigation with treated wastewater. SOTE (Kramer et al., 2022; Kramer & Mau, 2020; Yin et al., 2021) and Van 
der Zee (van der Zee et al., 2014) have demonstrated that changes in overall salinity concentration generally occur 
much quicker than changes in the relative amount of sodium bonded to the soil's exchange layer. In arid regions 
with seasonal rainfall, SOTE, Russo, and Van der Zee have shown that leaching of salts due to precipitation 
can increase the risk of soil degradation (Kramer et al., 2022; Kramer & Mau, 2020; Russo, 2013; van der Zee 
et al., 2014; Yin et al., 2021). SOTE and the Russo model have likewise been used to study the effects of longterm 
irrigation with treated wastewater, with simulations showing increased probability of degradation to hydraulic 
conductivity (Bardhan et al., 2016; Russo et al., 2015). The SOTE model, in particular, has been used to examine 
how hysteresis might affect our understanding of the risk of soil degradation (Kramer et al., 2022; Kramer & 
Mau, 2020). Inclusion of hysteresis when modeling changes in hydraulic conductivity has been shown to greatly 
increase the expected risk of degradation, with results being highly soil specific. An adapted version of the SOTE 
model has also been used to examine plant responses to salinity and sodicity (Yin et al., 2021) and how varia-
tions in plant tolerance to salinity levels effect overall water dynamics in agroecosystems (Yin et al., 2023). The 
Russo framework has been used to study how alternating between irrigation with treated wastewater and desal-
inated water can improve water uptake in orchards, as compared to irrigation with freshwater alone (Assouline 
et al., 2020; Russo, 2016; Russo et al., 2015, 2020).

8. Priorities for Future Research
While significant progress has been made in understanding salinity and sodicity dynamics and their effects on 
agricultural systems, a number of important gaps remain. In this section, we highlight some of the most important 
priorities for future research on salinity and sodicity in agricultural systems.

To date, there has been limited exploration of the expected effects of climate change on salinity and sodic-
ity dynamics, despite ample opportunity for such studies. While the machine-learning approach developed by 
Hassani et al. (2020); Hassani et al. (2021) explores this question from the perspective of primary soil salinity, 
we are unaware of any study that analyzes how changing rainfall, temperature, and other climate variables are 
likely to affect salinity and sodicity levels in irrigated areas. Rising temperatures are likely to increase evaporative 
demand, which has the potential to aggravate the probability of rising salinity concentrations in soil systems. 
Rainfall patterns are crucial to the leaching of salts and the risk of soil degradation. The effect of changing rainfall 
patterns on salinity and sodicity patterns deserves special attention because the specific nature of the change—
for example, an increase or decrease in extreme events, a shorter or longer rainfall season, more or less annual 
rainfall—has the potential to lead to markedly different results. Meteorological variables (e.g., evapotranspiration 
and precipitation) are inputs to many of the models discussed here and have been regularly used in studies not 
focused on salinity and sodicity. Explicit studies of how climate variables are likely to affect salinity and sodicity 
should therefore be easily achievable. Such studies are likely to become increasingly important as farmers and 
policy makers will have to develop irrigation strategies that can be used to mitigate the effects of climate change.

We are also unaware of any integration between the salinity and sodicity models reviewed here and general circu-
lation models (GCMs) and Earth Systems Models used to study weather and climate on a global scale. Research 
has suggested that consideration of soil structure can have an important effect on Earth System Models (Fatichi 
et al., 2020). Future research should therefore consider not only how climate changes might affect salinity and 
sodicity dynamics, but also how resulting changes in soil structure might induce a feedback on other physical, 
chemical, and biological processes.

Application of machine-learning principles and statistics to the challenges posed by salinity and sodicity has 
remained limited up to now, despite the ample opportunity offered by such tools (Razavi et  al.,  2022). The 
approach introduced by Vermeulen and Niekerk (2017) should be modified to investigate regions that are particu-
larly at risk of irrigation or groundwater-induced salinity, sodicity-driven soil degradation, or even easy targets 
for rehabilitative efforts. Machine learning and statistical analysis may also have great potential in increasing 
our ability to forecast the effect of irrigation patterns on plant output. Likewise, the predictive abilities offered 
by these tools could prove an asset in improving our ability to model hysteresis behaviors, if they can be used to 
identify clear patterns following variable changes in input and output.
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There is also a need to further integrate the best models for plant response to salinity with the leading models 
for salinity and sodicity dynamics. While some of the dynamical models include the effects of changing osmotic 
potential on plant water uptake (Section 5.5), these models lag behind the best models developed for the effects of 
salinity on plant growth. Likewise, the leading models for the effect of saline water on plant growth are restricted 
to the study of static water-input conditions (Section 4). The integration of such models is critical to increasing 
our understanding of how and if marginal quality water resources can be used strategically, so that damage to 
plants and soils is minimized while savings in freshwater are maximized. For instance, it may be possible to 
identify specific points in the growing season during which high-salinity water has a minimal effect on plant 
yield. It is equally critical to be aware of periods when damage to plant growth resulting from the application of 
saline irrigation.

The ability to analyze the effects of salinity and sodicity on relative Ks also remains limited, despite ample poten-
tial for improvement. While the development and integration of a module for how hysteresis affects changes in 
Ks is an important step (Kramer et al., 2021, 2022), the hysteresis module should be available in more software 
programs, such as Hydrus or SWAP. Integrating a hysteresis module into dynamical modeling frameworks should 
actually be relatively simple, especially for the existing Python implementation of Hydrus, Phydrus (Collenteur 
et al., 2021). Such integration would allow a wider set of users to explore the effects of changing Ks in tandem 
with other soil and plant processes. It is worth noting that while inclusion of hysteresis in SOTE has at times been 
computationally expensive, this is largely because of applications that have focused on stochastic ensembles of 
hundreds or thousands of instances. However, each simulation instance is independent from the others (this class 
of problem is nicknamed embarrassingly parallel problem), and readily available cloud-computing services  or 
multi-core processor servers would eliminate this obstacle. Furthermore, if used to study a single instance, the 
hysteresis module presented in Kramer et al. (2021) should not be regarded as computationally demanding.

Future developments in modeling capabilities can also be pushed forward with more focused experimental stud-
ies. Our ability to accurate characterize degradation risk and hysteresis patterns, for instance, is constrained by a 
relatively narrow body of experimental work. Additional lab and field experiments are critical to fully parame-
terize the Kramer et al. (2021) hysteresis module, which would in turn allow for more accurate modeling assess-
ments. Long-term field studies monitoring how changes in salinity and sodicity affect increases and decreases in 
hydraulic conductivity, and other key soil variables, are particularly lacking and essential for better evaluation of 
existing models and development of new modeling frameworks.

Finally, better integration of dynamical models for the effects of salinity and sodicity with economic models is 
imperative. While the economic impact of salinity has been widely studied, most research has focused on under-
standing the issue from a regional or national perspective (Kan & Rapaport-Rom, 2012; Reznik et al., 2017; 
Schwabe et al., 2006; Slater et al., 2020). Studies that focus on the farm-level, meanwhile, have generally consid-
ered static input conditions (Baum et al., 2016; Ben-Gal et al., 2013; Kan, 2003, 2007; Kaner et al., 2017). We are 
not aware of any study that attempts to quantify the economic impact of soil degradation resulting from changing 
saline and sodic input conditions at the farm level. By integrating economic and dynamical models, policy makers 
will have better tools for analyzing the short- and long-term costs of different water management strategies, the 
profitability of certain crops, the actual cost of long-term damage to soil structure, and subsequent rehabilitation.

Data Availability Statement
An updated version of the map presented in Figure 1 can be found on FAO's website (FAO, 2023).
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